Respuesta :



<BAD ≅ <CFD                Alternate interior angles theorem

<ADB ≅ <CDF                Vertical angles are congruent

Δ ADB ≈ Δ FDC             Angle angle similarity postulate

Answer:

a) [tex]\angle BAD = \angle CFD[/tex]

Since we are given that AB || CF

So, [tex]\angle BAD = \angle CFD[/tex] (Alternate interior angles)

b) [tex]\angle ADB = \angle CDF[/tex]

Since they are vertical angles , So, they are congruent

c)ΔADB ≈ΔFDC

[tex]\angle ADB = \angle CDF[/tex]  (vertical angles)

[tex]\angle BAD = \angle CFD[/tex] (Alternate interior angles)

[tex]\angle ABD = \angle FCD[/tex] (Alternate interior angles)

So, ΔADB ≈ΔFDC (By angle angle similarity postulate )