Respuesta :
Answer:
[tex]0.5\ in[/tex]
[tex]2\ in[/tex]
Step-by-step explanation:
we have
[tex]2a+b=15.7[/tex]
Verify each case
case A) [tex]-2\ in[/tex]
this length does not make sense for a possible value of b
case B) [tex]0\ in[/tex]
this length does not make sense for a possible value of b
case C) [tex]0.5\ in[/tex]
Find the value of a
[tex]2a+b=15.7[/tex]
[tex]2a+0.5=15.7[/tex]
[tex]2a=15.2[/tex]
[tex]a=7.6\ in[/tex]
Verify the triangle inequality theorem
[tex]0.5+7.6 > 7.6[/tex] -----> is true
[tex]7.6+7.6 > 0.5[/tex] -----> is true
therefore
this length does make sense for a possible value of b
case D) [tex]2\ in[/tex]
Find the value of a
[tex]2a+b=15.7[/tex]
[tex]2a+2=15.7[/tex]
[tex]2a=13.7[/tex]
[tex]a=6.85\ in[/tex]
Verify the triangle inequality theorem
[tex]2+6.85 > 6.85[/tex] -----> is true
[tex]6.85+6.85 > 2[/tex] -----> is true
therefore
this length does make sense for a possible value of b
case E) [tex]7.9\ in[/tex]
Find the value of a
[tex]2a+b=15.7[/tex]
[tex]2a+7.9=15.7[/tex]
[tex]2a=7.8[/tex]
[tex]a=3.9\ in[/tex]
Verify the triangle inequality theorem
[tex]7.9+3.9 > 3.9[/tex] -----> is true
[tex]3.9+3.9 > 7.9[/tex] -----> is not true
therefore
this length does not make sense for a possible value of b