which triangle is similar to △ABC if sin(A)=1/4, cos(A)=√15/4, and tan(A)=1/√15?

Answer:
(D)
Step-by-step explanation:
The given triangle ABC has sinA=[tex]\frac{1}{4}[/tex], cosA=[tex]\frac{\sqrt{15}}{4}[/tex] and tanA=[tex]\frac{1}{\sqrt{15}}[/tex].
From the given options, option D is correct because, SinX=[tex]\frac{6}{24}=\frac{1}{4}[/tex],
cosX=[tex]\frac{6\sqrt{15}}{24}=\frac{\sqrt{15}}{4}[/tex] and
tanX=[tex]\frac{6}{6\sqrt{15}}=\frac{1}{\sqrt{15}}[/tex]
Since, the values of sin, cos and tan of triangle XYZ are similar to teh values of triangle ABC, therefore triangle XYZ is similar to triangle ABC.