Respuesta :

Answer: [tex]\bold{(A)\ \dfrac{\text{51 miles}}{\text{1 hour}}}[/tex]

Step-by-step explanation:

Consider the formula "distance (d) = rate (r) x time(t)" and solve for r.

d = r · t

÷ t  ÷ t  

[tex]\dfrac{d}{t}=r[/tex]

Now plug in the given d and t values from the table to solve for r:

[tex]r=\dfrac{\text{204 miles}}{\text{4 hours}}[/tex]

    [tex]=\dfrac{\text{51 miles}}{\text{1 hour}}[/tex]   simplified the fraction


You can check this by plugging in the other 3 values from the table:

[tex]r=\dfrac{\text{306 miles}}{\text{6 hours}}[/tex]

    [tex]=\dfrac{\text{51 miles}}{\text{1 hour}}[/tex]  

[tex]r=\dfrac{\text{408 miles}}{\text{8 hours}}[/tex]

    [tex]=\dfrac{\text{51 miles}}{\text{1 hour}}[/tex]  

[tex]r=\dfrac{\text{510 miles}}{\text{10 hours}}[/tex]

    [tex]=\dfrac{\text{51 miles}}{\text{1 hour}}[/tex]