Respuesta :

Answer:

[tex](f o f^{-1})(3) = 3[/tex]

Step-by-step explanation:

[tex]f(x) = \frac{x-7}{2}[/tex]

We need to find (fof^-1)(3)

First we find f^-1(x)

Replace f(x) with y

[tex]y = \frac{x-7}{2}[/tex]

Now replace x  with y and y with x

[tex]x = \frac{y-7}{2}[/tex]

Multiply by 2 on both sides

2x = y -7

Now add 7 on both sides

2x + 7 = y

Replace y with f^-1(x)

f^-1(x) = 2x+ 7

Now we find (fof^-1)(3)

[tex](f o f^{-1})(3) = f(f^{-1}(3))[/tex]

First we find f^-1(3)

f^-1(x) = 2x+ 7

f^-1(3) = 2(3) + 7 = 6 + 7 = 13

Now we plug in 13 for x  and find out f(13)

[tex]f(x) = \frac{x-7}{2}[/tex]

[tex]f(13) = \frac{13-7}{2}= 3[/tex]

So , [tex](f o f^{-1})(3) = f(f^{-1}(3))= 3[/tex]