Respuesta :

Answer:

m = (a - b) / (a + b)

Step-by-step explanation:

Quadratic equations with opposite roots are of the form x^2 - c = 0 where c is some constant. The ' b'  of ax^2 + bx + c = 0  is 0.

(x^2 - bx) (ax - c)  = (m - 1)(m + 1)

Cross multiplying we have

(x^2 - bx)(m + 1) = (ax - c)(m - 1)

mx^2 + x^2 - mbx - bx = max - ax - mc + c

mx^2 + x^2 - mbx - bx - max + ax - mc + c = 0

(m + 1)x^2 + ( -mb - b - ma + a)x - mc + c = 0

The coefficient of x = 0 so

-mb - b - ma + a = 0

m(-b - a) =  b - a

m =  (b - a) / (-b-a)

m = -(b - a) / b + a

m = (a - b) / (a + b)   (answer).