1950, the U.S. federal budget was $39.4 billion, in 2000, the federal budget was $2025.2 billion. Find an exponential function to model this data

Respuesta :

DeanR

Let's do the usual thing and make t the years since 1950.   We'll just abbreviate a billion B.

f(1950-1950)=39.4 B

f(2000-1950) =2025.2 B

Our exponential form for f will be

[tex]f = a e^{kt}[/tex]

[tex]39.4 \textrm{ B} = a e^{ 0 k} = a[/tex]

[tex]2025.2 \textrm{ B} = a e^{50 k}[/tex]

Dividing

[tex]\dfrac{2025.2}{39.4} = e^{50 k}[/tex]

[tex]50 k = \ln \dfrac{2025.2}{39.4}[/tex]

[tex]k = \frac 1 {50} \ln \dfrac{2025.2}{39.4} \approx 0.0787932[/tex]

Our function is

[tex]f = 39.4 \textrm{ B } e^{0.0787932 t }[/tex]

Since [tex]e^{0.0787932} \approx 1.08198[/tex]

[tex]f = 39.4 \textrm{B } 1.08198^t }[/tex]

around 8.2 % annualized growth.