Respuesta :

ANSWER

[tex] \cot( \theta) = - \frac{4}{3} [/tex]


EXPLANATION

We were given that

[tex] \sin( \theta) = - \frac{3}{5} [/tex]

We need to find
[tex] \cot( \theta) .[/tex]

We know that,

[tex] \cot( \theta) = \frac{ \cos( \theta) }{ \sin( \theta) } [/tex]


We now need to find
[tex] \cos( \theta) [/tex]

using the Pythagorean identity or the right angle triangle.

According to the Pythagorean identity,

[tex] \cos^{2} \theta + \sin^{2} \theta = 1[/tex]


[tex] \cos^{2} \theta + {( \frac{ - 3}{5} )}^{2} = 1[/tex]



[tex] \cos^{2} \theta + \frac{9}{25} = 1[/tex]


[tex] \cos^{2} \theta = 1 - \frac{9}{25} [/tex]

[tex] \cos^{2} \theta = \frac{16}{25} [/tex]




[tex] \cos\theta = \pm \: \sqrt{ \frac{16}{25} } [/tex]


[tex] \cos\theta = \pm \: \frac{4}{5} [/tex]

Since we are dealing with the fourth quadrant,

[tex] \cos\theta = \frac{4}{5} [/tex]


This implies that,


[tex] \cot( \theta) = \frac{ \frac{4}{5} }{ - \frac{3}{5} } [/tex]

[tex] \cot( \theta) = - \frac{4}{3} [/tex]

The correct answer is D.