Respuesta :
Answer: Our required formula becomes :
[tex]a=f(b)=-13-\frac{7}{4}b[/tex]
Step-by-step explanation:
Since we have given that
[tex]4a+7b=-52\\[/tex]
We need to write a formula for f(b) in terms of b So, it becomes
[tex]4a=-52-7b\\\\a=\frac{-52-7b}{4}\\\\a=\frac{-52}{4}-\frac{7b}{4}\\\\a=-13-\frac{7b}{4}[/tex]
Hence, our required formula becomes :
[tex]a=f(b)=-13-\frac{7}{4}b[/tex]
Answer:
[tex]f(b)=\dfrac{-52-7b}{4}[/tex]
Step-by-step explanation:
The given equation is
[tex]4a+7b=-52[/tex]
where, b is the input value and a is the output value of function f.
We need to find the formula for f(b) in terms of b.
It means we have to separate [tex]a[/tex] on one side because [tex]a=f(b)[/tex].
Consider the given equation.
[tex]4a+7b=-52[/tex]
Subtract 7b from both sides.
[tex]4a+7b-7b=-52-7b[/tex]
[tex]4a=-52-7b[/tex]
Divide both sides by 4.
[tex]a=\dfrac{-52-7b}{4}[/tex]
Substitute a=f(b).
[tex]f(b)=\dfrac{-52-7b}{4}[/tex]
Therefore, the required formula is [tex]f(b)=\dfrac{-52-7b}{4}[/tex].