For a given input value b, the function f outputs a value a to satisfy the following equation. 4a+7b=−52 Write a formula for ) f(b) in terms of b.

Respuesta :

Answer: Our required formula becomes :

[tex]a=f(b)=-13-\frac{7}{4}b[/tex]

Step-by-step explanation:

Since we have given that

[tex]4a+7b=-52\\[/tex]

We need to write a formula for f(b) in terms of b So, it becomes

[tex]4a=-52-7b\\\\a=\frac{-52-7b}{4}\\\\a=\frac{-52}{4}-\frac{7b}{4}\\\\a=-13-\frac{7b}{4}[/tex]

Hence, our required formula becomes :

[tex]a=f(b)=-13-\frac{7}{4}b[/tex]


Answer:

[tex]f(b)=\dfrac{-52-7b}{4}[/tex]

Step-by-step explanation:

The given equation is

[tex]4a+7b=-52[/tex]

where, b is the input value and a is the output value of function f.

We need to find the formula for f(b) in terms of b.

It means we have to separate [tex]a[/tex] on one side because [tex]a=f(b)[/tex].

Consider the given equation.

[tex]4a+7b=-52[/tex]

Subtract 7b from both sides.

[tex]4a+7b-7b=-52-7b[/tex]

[tex]4a=-52-7b[/tex]

Divide both sides by 4.

[tex]a=\dfrac{-52-7b}{4}[/tex]

Substitute a=f(b).

[tex]f(b)=\dfrac{-52-7b}{4}[/tex]

Therefore, the required formula is [tex]f(b)=\dfrac{-52-7b}{4}[/tex].