Respuesta :

Answer: x = 15, ∠K = 45.7°, ∠L = 45.7°, ∠M = 88.6°

Step-by-step explanation:

Since ∠K ≅ ∠L, then ΔKLM is an isoceles triangle with base KL

 KM ≅ LM

3x + 23 = 7x - 37

       23 = 4x - 37

       60 = 4x

        15 = x

KM = LM = 3x + 23

               = 3(15) + 23

               = 45 + 23

               = 68

KL = 9x - 40

    = 9(15) - 40

    = 135 - 40

    = 95

Next, draw a perpendicular bisector KN from K to KL. Thus, N is the midpoint of KL and ΔMNL is a right triangle.

  • Since N is the midpoint of KL and KL = 95, then NL = 47.5
  • Since ∠N is 90°, then NL is adjacent to ∠l and ML is the hypotenuse

Use trig to solve for ∠L (which equals ∠K):

cos ∠L = [tex]\frac{adjacent}{hypotenuse}[/tex]

cos ∠L = [tex]\frac{47.5}{68}[/tex]

      ∠L = cos⁻¹ [tex](\frac{47.5}{68})[/tex]

      ∠L = 45.7  

Triangle sum Theorem:

∠K + ∠L + ∠M = 180°    

45.7 + 45.7 + ∠M = 180

       91.4     + ∠M = 180

                      ∠M = 88.6