Respuesta :

Answer:

D

Step-by-step explanation:

using the law of exponents

[tex](ab)^{n}[/tex] = [tex]a^{n}[/tex] × [tex]b^{n}[/tex], hence

[tex](7.2)^{7}[/tex] = [tex]7^{7}[/tex] × [tex]2^{7}[/tex] → D


The equivalent expression is [tex]7^7\cdot 2^7[/tex], so the correct option is D.

Given:

The expression is:

[tex](7\times 2)^7[/tex]

To find:

The equivalent expression.

Explanation:

Power of a product property of exponents: If [tex]a,b,x[/tex] are three real numbers, then

[tex](ab)^x=a^xb^x[/tex]

We have,

[tex](7\times 2)^7[/tex]

Using the power of a product property of exponents, we get

[tex](7\times 2)^7=7^7\cdot 2^7[/tex]

Therefore, the correct option is D.

Learn more:

https://brainly.com/question/16751843