Respuesta :

These are two questions and two answers.


Question 1. For all x in the domain, the function is equivalent to:


Answer:

[tex]J.\frac{1}{x^2-x}[/tex]


Explanation:


First note the the domain of the function is all the real values except those for which the denominator is zero, this is x³ - x = 0.


And x³ - x = 0 ⇒ x (x² - 1) = 0 ⇒ x (x - 1) (x + 1)  = 0

⇒ x = 0, x = 1, x = - 1.

∴ The domain is all the real values such that x ≠0, x ≠ - 1, and x ≠ 1.


Now, you can simplify the function following these steps:


[tex]\frac{x+1}{x^3-x} = \frac{x+1}{x(x^2-1)}=\frac{x+1}{x(x+1)(x-1)}= \frac{1}{x(x-1)}= \frac{1}{x^2-x}[/tex]


So, the answer is the option J.


Question 2. What are the real solutions to the equation |x|² + 2|x| - 3 = 0?


Answer: option F. +/- 1


Explanation:

1) Use the fact that |x|² = x²

⇒ x² + 2|x| - 3 = 0


2) Transpose terms to isolate 2|x|:

⇒2|x|  = 3 - x²


3) Square both sides:

⇒ [2|x|] ² = (3 - x² )²

⇒ 4|x|² = 9 - 6x² + x⁴

⇒ 4x² = 9 -6x² + x⁴


4) Transpose terms:

⇒  x⁴ - 4x² - 6x² + 9 = 0

⇒ x⁴ - 10x² + 9 = 0


5) Change variable: x² = u

⇒ u² - 10u + 9 = 0


6) Factor:

⇒ (u - 9) (u - 1) = 0


  • u - 9 = 0 ⇒ u = 9
  • u - 1 = 0 ⇒ u = 1

6) Comeback to the variable x (undo the change of variable):

⇒ x² =  u ⇒

  • x² = 9 ⇒ x = 3, x = - 3
  • x² = 1 ⇒ x = 1, x = - 1

6) Verify extraneous solutions:

|x|² + 2|x| - 3 = 0


  • Replace x = 3

        ⇒ |3|² + 2|3| - 3 = 0

        ⇒ 9 + 6 - 3 = 0

        ⇒ 12 = 0 ⇒ FALSE ⇒ extraneous solution ⇒ discarded


  • Replace x = - 3

        ⇒ |-3|² + 2|-3| - 3 = 0

        ⇒ 9 + 6 - 3 = 0

        ⇒ 12 = 0 ⇒ FALSE ⇒ extraneous solution ⇒ discarded


  • Replace x = 1

        ⇒ |1|² + 2|1| - 3 = 0

        ⇒ 1 + 2 - 3 = 0

        ⇒ 0 = 0 ⇒ TRUE ⇒ actual solution


  • Replace x = - 1

        ⇒ |-1|² + 2|-1| - 3 = 0

        ⇒ 1 + 2 - 3 = 0

        ⇒ 0 = 0 ⇒ TRUE ⇒ actual solution


Conclusion: the solutions are +1 and -1.