Respuesta :

Start by distributing the exponent to each of the terms in [tex](2u)^{3}[/tex].  This will become [tex]2^{3} u^{3}[/tex], and [tex]2^{3} =8[/tex].  Now, the expression is:

[tex]\frac{2u^{3} v^{2} }{8u^{3} * u^{2} }[/tex].


We can now simplify the bottom to read: [tex]8u^{5}[/tex] because when multiplying variables raised to an exponent, we add the exponents.  The expression now looks like:

[tex]\frac{2u^{3} v^{2} }{8u^{5} }[/tex]


The 2/8 simplifies to 1/4:

[tex]\frac{u^{3} v^{2} }{4u^{5} }[/tex]


Now, we have two u terms on the top and bottom.  When dividing variables raised to an exponent, we subtract the exponents.  However, since 3-5=-2, the term will be on the bottom to avoid the negative exponent.  The final answer is:

[tex]\frac{v^{2} }{4u^{2} }[/tex]


Hope this makes sense!!