Respuesta :

Answer:

Vertex form : [tex]y=4(x-\frac{3}{2})^2-4[/tex]

Intercept form : [tex]y=4(x- \frac{1}{2}) (x-\frac{5}{2})[/tex]

Step-by-step explanation:

Here we are given

[tex]y=4x^2-12x+5[/tex]

Factoring [tex]4x^2-12x+5[/tex]

We get

[tex]y=4x^2-10x-2x+5=2x(2x-5)-1(2x-5)= (2x-1)(2x-5)[/tex]

Factoring 2 from both brackets we get

[tex]y=4(x- \frac{1}{2}) (x-\frac{5}{2})[/tex]

This is Intercept form

For the vertex form

we have

[tex]h=-\frac{b}{2a}=- \frac{-12}{8}= \frac{3}{2}[/tex]

Now substituting in y we get

[tex]k=4(\frac{3}{2})^2-12( \frac{3}{2})+5=-4[tex]

The vertex form

[tex]y=a(x-h)^2+k[/tex]

We get

[/tex]y=4(x-\frac{3}{2})^2-4[/tex]