Respuesta :

Answer:

9

Step-by-step explanation:


For this case we have a system of two equations with two unknowns, represented by x and y respectively.

[tex]y=\frac{1}{4}x+7 (1)\\y=\frac{1}{2}x+5 (2)[/tex]

To solve we follow the steps below:

Step 1:

We multiply the second equation by -1

[tex]y=\frac{1}{4}x+7\\-y=-\frac{1}{2}x-5[/tex]

Step 2:

We add both equations

[tex]y-y=\frac{1}{4}x-\frac{1}{2}x+7-5\\0=-\frac{1}{4}x+2[/tex]

Step 3:

We clear x:

[tex]\frac{1}{4}x=2\\x=4*2\\x=8[/tex]

Step 4:

We substitute "x" in any of the equations and clear "y":

[tex]y=\frac{1}{2}x+5\\y=\frac{1}{2}(8)+5\\y=4+5\\y=9[/tex]

Thus, the solution of the system is given by: [tex](x, y) = (8,9)[/tex]

Answer:

[tex](x, y) = (8,9)[/tex]

The y coordinate = 9

Option A