Respuesta :
For this case we have a system of two equations with two unknowns, represented by x and y respectively.
[tex]y=\frac{1}{4}x+7 (1)\\y=\frac{1}{2}x+5 (2)[/tex]
To solve we follow the steps below:
Step 1:
We multiply the second equation by -1
[tex]y=\frac{1}{4}x+7\\-y=-\frac{1}{2}x-5[/tex]
Step 2:
We add both equations
[tex]y-y=\frac{1}{4}x-\frac{1}{2}x+7-5\\0=-\frac{1}{4}x+2[/tex]
Step 3:
We clear x:
[tex]\frac{1}{4}x=2\\x=4*2\\x=8[/tex]
Step 4:
We substitute "x" in any of the equations and clear "y":
[tex]y=\frac{1}{2}x+5\\y=\frac{1}{2}(8)+5\\y=4+5\\y=9[/tex]
Thus, the solution of the system is given by: [tex](x, y) = (8,9)[/tex]
Answer:
[tex](x, y) = (8,9)[/tex]
The y coordinate = 9
Option A