Respuesta :
[tex]n(t)\approx 190000 toads[/tex]Consider the exponential decay model.
In general where [tex]n(t)[/tex] is the number of toads after time [tex]t[/tex] years, [tex] \alpha [/tex] is the initial number of toads, and [tex]r[/tex] is the growth rate of the toads,
[tex] \alpha = 430000 [/tex]
[tex]r=1-0.055=0.945[/tex] [100%-5.5%]
[tex]n(t)=\alpha r^t[/tex]
[tex]n(t)=430000\times0.945^t[/tex]
[tex]\therefore n(14)=430000\times 0.945^{14} [/tex]
[tex]n(t)=194766.2824...\approx 194766 toads[/tex]
Since your question is written to 2 significant figures,
[tex]n(t)\approx 190000toads[/tex]
In general where [tex]n(t)[/tex] is the number of toads after time [tex]t[/tex] years, [tex] \alpha [/tex] is the initial number of toads, and [tex]r[/tex] is the growth rate of the toads,
[tex] \alpha = 430000 [/tex]
[tex]r=1-0.055=0.945[/tex] [100%-5.5%]
[tex]n(t)=\alpha r^t[/tex]
[tex]n(t)=430000\times0.945^t[/tex]
[tex]\therefore n(14)=430000\times 0.945^{14} [/tex]
[tex]n(t)=194766.2824...\approx 194766 toads[/tex]
Since your question is written to 2 significant figures,
[tex]n(t)\approx 190000toads[/tex]
Answer:
In photo below
Explanation:
In photo below
I hope this helps

