Respuesta :
[tex]x^2+18=\\\\x^2-(-18)=\\\\(x-\sqrt{-18})(x+\sqrt{-18})=\\\\(x-3\sqrt2i)(x+3\sqrt2i)[/tex]
Answer:
The factors are [tex](x-3\sqrt2 i)(x+3\sqrt2 i)[/tex]
Step-by-step explanation:
Given : Expression [tex]x^2+18[/tex]
To find : Factor the expression over the complex numbers ?
Solution :
Expression [tex]x^2+18[/tex]
First we solve for x,
[tex]x^2+18=0[/tex]
[tex]x^2=-18[/tex]
Taking root both side,
[tex]x=\sqrt{-18}[/tex]
[tex]x=\pm 3\sqrt{2}i[/tex]
So, The factors are [tex](x-3\sqrt2 i)(x+3\sqrt2 i)[/tex]