We know that the number of users triple each day
Let number of users on day 1 be x
⇒ Users on day 2 = [tex]3 * (x)[/tex] = 3x
and Users on day 3 = [tex]3 * (3x)[/tex] = 9x
And so on...
% Increase in users from day 1 to day 2 = [tex]\frac{\text{Users on Day 2 - Users on Day 1}}{\text{Users on Day 1}} * 100[/tex]
⇒ % Increase in users from day 1 to day 2 = [tex]\frac{3x-x}{x} * 100[/tex]
⇒ % Increase in users from day 1 to day 2 = [tex]\frac{2x}{x} * 100[/tex]
⇒ % Increase in users from day 1 to day 2 = 200%
Similarly,
% Increase in users from day 2 to day 3 = [tex]\frac{\text{Users on Day 3 - Users on Day 2}}{\text{Users on Day 2}} * 100[/tex]
⇒ % Increase in users from day 2 to day 3 = [tex]\frac{9x-3x}{3x} * 100[/tex]
⇒ % Increase in users from day 2 to day 3 = [tex]\frac{6x}{3x} * 100[/tex]
⇒ % Increase in users from day 2 to day 3 = 200%
Hence, we can see that the percentage increase each day is 200%