Respuesta :

tala32

[tex]g {}^{2} (x) =( \frac{x - 1}{x} ) {}^{2} \\ g {}^{2} (x) = \frac{x {}^{2} - 2x + 1 }{x {}^{2} } [/tex]
[tex]g {}^{3} (x) = ( \frac{x - 1}{x} ) {}^{3} \\ g {}^{3} (x) = \frac{x {}^{3} - x {}^{2} - 2x {}^{2} - 2x + x - 1 }{x {}^{3} }[/tex]

Answer:

g {}^{2} (x) =(  \frac{x - 1}{x} ) {}^{2}  \\ g {}^{2} (x) =  \frac{x {}^{2} - 2x + 1 }{x {}^{2} }

g {}^{3} (x) = ( \frac{x - 1}{x} ) {}^{3}  \\ g {}^{3} (x) =  \frac{x {}^{3} - x {}^{2} - 2x {}^{2}  - 2x  + x - 1 }{x {}^{3} }

Step-by-step explanation:

Have a nice dayyyyyyyy!!