Respuesta :

First, find the value of g(x) at x=4:  it's 3.

Next, use this result, 3, as the input to f(x):  f(3) = 1

So f(g(4)) = 1.

This is a composite function, we apply the chain rule to differentiate,

[tex] f(g(x))'=f'(g(x))\times g'(x) [/tex]

At [tex] x=4[/tex]

[tex] f(g(4))'=f'(g(4))\times g'(4) [/tex]

[tex] f(g(4))'=f'(3)\times g'(4) [/tex]

[tex] f(g(4))'=8\times(-4) [/tex]

[tex] f(g(4))'=-32 [/tex]

The correct answer is option C