Point j is on line segment \overline{ik}
ik
. Given jk=2x-1,jk=2x−1, ik=3x+2,ik=3x+2, and ij=3x-5,ij=3x−5, determine the numerical length of \overline{jk}.
jk
.

Respuesta :

IJ = 3x - 5

JK = 2x - 1

IK = 3x + 2

   IJ   +    JK   =    IK           segment addition postulate

3x - 5 + 2x - 1 = 3x + 2       substitution

            5x - 6 = 3x + 2       simplify (add like terms)

            2x - 6 = 2             subtraction property (subtracted 3x from both sides)

                  2x = 8             addition property (added 6 to both sides)

                    x = 4             division property (divided both sides by 2)

JK = 2x - 1   = 2(4) - 1   = 8 - 1   = 7

Answer: JK = 7

Using line segments concepts, it is found that the numerical length of segment jk is of 7 units.

-----------------------

  • Point j is on the line segment ik, which means that:

[tex]ik = ij + jk[/tex]

The measures are:

[tex]ik = 3x + 2[/tex]

[tex]ij = 3x - 5[/tex]

[tex]jk = 2x - 1[/tex]

-----------------------

Replacing the measures into the equation, we can find x.

[tex]ik = ij + jk[/tex]

[tex]3x + 2 = 3x - 5 + 2x - 1[/tex]

[tex]3x + 2 = 5x - 6[/tex]

[tex]2x = 8[/tex]

[tex]x = \frac{8}{2}[/tex]

[tex]x = 4[/tex]

-----------------------

The numerical length of segment jk is:

[tex]jk = 2x - 1 = 2(4) - 1 = 8 - 1 = 7[/tex]

7 units.

A similar problem is given at https://brainly.com/question/18285191