Respuesta :

Correct Answer is: Perimeter of ΔDMN is 54.873 units.

Solution:-

Given that DM=10√3,m∠M=75°,m∠N=45°

So,m∠D= 180-(75+45) = 60°

So to find perimeter we need other 2 sides also.

Let us use sine rule to find them.

[tex]\frac{DM}{sin(N)}=\frac{DN}{sin(M)} =\frac{MN}{sin(D)}[/tex]

[tex]\frac{10\sqrt{3} }{sin(45)} = \frac{DN}{sin(75)}=\frac{MN}{sin(60)}[/tex]

[tex]DN=\frac{10\sqrt{3} }{sin(45)}Xsin(75) = 23.66[/tex]

[tex]MN=\frac{10\sqrt{3} }{sin(45)} Xsin(60)=21.213[/tex]

Hence perimeter = DM+MN+DN

                             = 10+21.213+23.66

                             =54.873 units