Consider the parabola r​(t)equalsleft angle at squared plus 1 comma t right angle​, for minusinfinityless thantless thaninfinity​, where a is a positive real number. Find all points on the parabola at which r and bold r prime are orthogonal.

Respuesta :

Given:-   [tex]r(t)=< at^2+1,t>[/tex]  ; [tex]-\infty < t< \infty[/tex] , where a is any positive real number.

Consider the helix parabolic equation :  

                                              [tex]r(t)=< at^2+1,t>[/tex]

now, take the derivatives we get;

                                            [tex]r{}'(t)=<2at,1>[/tex]

As, we know that two vectors are orthogonal if their dot product is zero.

Here,  [tex]r(t) and r{}'(t)[/tex]  are orthogonal i.e,   [tex]r\cdot r{}'=0[/tex]

Therefore, we have ,

                                  [tex]< at^2+1,t>\cdot < 2at,1>=0[/tex]

[tex]< at^2+1,t>\cdot < 2at,1>=<at^2+1\cdot\left(2at\right), t\cdot \left(1)>[/tex]

                                              [tex]=2a^2t^3+2at+t[/tex]

[tex]2a^2t^3+2at+t=0[/tex]

take t common in above equation we get,

[tex]t\cdot \left (2a^2t^2+2a+1\right )=0[/tex]

⇒[tex]t=0[/tex] or [tex]2a^2t^2+2a+1=0[/tex]

To find the solution for t;

take [tex]2a^2t^2+2a+1=0[/tex]

The number[tex]D = b^2 -4ac[/tex] determined from the coefficients of the equation [tex]ax^2 + bx + c = 0.[/tex]

The determinant [tex]D=0-4(2a^2)(2a+1)[/tex][tex]=-8a^2\cdot(2a+1)[/tex]

Since, for any positive value of a determinant is negative.

Therefore, there is no solution.

The only solution, we have t=0.

Hence, we have only one points on the parabola  [tex]r(t)=< at^2+1,t>[/tex] i.e <1,0>