Respuesta :

21)

[tex] a_{n}  [/tex]  = a₁ + d(n - 1)  ; where a₁ is the first term and d is the difference.

a₁ = 3, d = 4    →   [tex] a_{n}  [/tex]  = 3 + 4(n - 1)   = 3 + 4n - 4   = 4n - 1

[tex] a_{25}  [/tex] = 4(25) - 1   = 100 - 1   = 99

[tex] S_{n}  [/tex]  = [tex] \frac{a_{1} +a_{n} }{2}(n) [/tex]

[tex] S_{25}  [/tex]  = [tex] \frac{3 +99 }{2}(25) [/tex]  = [tex] \frac{102 }{2}  (25) [/tex] = 51 · 25  = 1275

Answer: [tex] a_{n}  [/tex] = 4n - 1  ,  1275

23)

[tex] a_{n}  [/tex]  = a₁ + d(n - 1)  ; where a₁ is the first term and d is the difference.

a₁ = 4, d = 10    →   [tex] a_{n}  [/tex]  = 4 + 10(n - 1)   = 4 + 10n - 10   = 10n - 6

[tex] a_{25}  [/tex] = 10(25) - 6   = 250 - 6   = 244

[tex] S_{n}  [/tex]  = [tex] \frac{a_{1} +a_{n} }{2} (n) [/tex]

[tex] S_{25}  [/tex]  = [tex] \frac{4 +244 }{2} (25) [/tex]  = [tex] \frac{248}{2}(25) [/tex] = 124 · 25  = 3100

Answer: [tex] a_{n}  [/tex] = 10n - 6  ,  3100