Respuesta :

You can use the rule of exponents

[tex] \cfrac{x^y}{x^z} = x^{y-z} [/tex]

to write

[tex] \cfrac{5^5}{5^2} = 5^{5-2} = 5^3 [/tex]

So, even if not required, we have a = 5 and b = 3.

Finally, if c equals all this, we have

[tex] c = 5^3 = 5\cdot 5 \cdot 5 = 125 [/tex]

Note that when dividing, and the base is the same, you can subtract the power signs.

(5^5)/(5^2) = 5^(5 - 2)

5 - 2 = 3

5^3 = a^b

Simplify.

5^3 = 5 x 5 x 5

5 x 5 x 5 = 125

c = 125

----------------------------------------------------------------------------------------------------------------

125 is your answer

----------------------------------------------------------------------------------------------------------------

hope this helps