Respuesta :
[tex] {(x^{\frac{2}{9}})^{\frac{3}{8}} * x^\frac{5}{17} * x^\frac{1}{12} * x^\frac{11}{72} * x^\frac{43}{72} [/tex]
2/9 times 3/8 = 1/12 , So
=[tex] {(x^{\frac{1}{12}}) }* x^\frac{5}{17} * x^\frac{1}{12} * x^\frac{11}{72} * x^\frac{43}{72} [/tex]
Now we add all the exponents , as by the rule of exponents if the base is same and the terms are in multiplication , then we add the exponents , i.e. a^m * a^n = a^(m+n)
=[tex] {x^{\frac{1}{12}+\frac{5}{17} +\frac{1}{12} +\frac{11}{72} +\frac{43}{72} } [/tex]
=[tex] x^\frac{247}{204} [/tex]
Answer:
Power x to the 1 twelfth
Step-by-step explanation:
The given expression is:
[tex]({x^{\frac{2}{9}}})^{\frac{3}{8}}[/tex]
In order to simplify an exponential expression which is inside another exponential expression, we have to multiply the exponents. In this case the exponents are 2/9 and 3/8, so
[tex]({x^{\frac{2}{9}}})^{\frac{3}{8}} = x^{(\frac{2}{9} \times \frac{3}{8})} = x^{\frac{1}{12}}[/tex]