Respuesta :
f^-1 (x) = e^x / 5
Replace y for x and x for y then solve for y
Y= ln5x
X=ln5y
X/ln5=y
e^x/5=y
Replace y for x and x for y then solve for y
Y= ln5x
X=ln5y
X/ln5=y
e^x/5=y
Answer:
Inverse of f(x) = ln5x , [tex]f^{-1}(x)=\frac{e^x}{5}[/tex]
Step-by-step explanation:
We have f(x) = ln 5x
y = ln x
For finding inverse replace x by y and y by x
x = ln 5y
[tex]e^x=e^{ln5y}\\\\5y=e^x\\\\y=\frac{e^x}{5}[/tex]
So, inverse of f(x) = ln5x , [tex]f^{-1}(x)=\frac{e^x}{5}[/tex]