Respuesta :

f^-1 (x) = e^x / 5

Replace y for x and x for y then solve for y

Y= ln5x
X=ln5y
X/ln5=y
e^x/5=y

Answer:

Inverse of f(x) = ln5x , [tex]f^{-1}(x)=\frac{e^x}{5}[/tex]

Step-by-step explanation:

We have f(x) = ln 5x

               y = ln x

For finding inverse replace x by y and y by x

           x =  ln 5y

           [tex]e^x=e^{ln5y}\\\\5y=e^x\\\\y=\frac{e^x}{5}[/tex]

So, inverse of f(x) = ln5x , [tex]f^{-1}(x)=\frac{e^x}{5}[/tex]