Respuesta :

gmany
The formula of the area of the equilateral triangle:
[tex]A_\Delta=\dfrac{a^2\sqrt3}{4}\\\\a=3\to A_\Delta=\dfrac{3^2\sqrt3}{4}=\dfrac{9\sqrt3}{4}[/tex]

The formula of the area of the rectangle:
[tex]A=width\times length=wl\\\\w=3;\ l=6\\\\A=3\cdot6=18[/tex]

[tex]T.A.=2A_\Delta+3A\\\\T.A.=2\cdot\dfrac{9\sqrt3}{4}+3\cdot18=\dfrac{9\sqrt3}{2}+54=(54+4.5\sqrt3)\ in^2[/tex]
The formula of the volume of the triangular prism:
[tex]V=A_\Delta\cdot l\\\\V=\dfrac{9\sqrt3}{4}\cdot6=\dfrac{9\sqrt3}{2}\cdot3=\dfrac{27\sqrt3}{2}=13.5\sqrt3\ in^3[/tex]





Answer:

T.A. = (54 + 9/2 √3 )

V = 27/2 √3

Step-by-step explanation:

Hello, the person above me is correct, although instead of 13.5, it would be 9/2; so convert the decimal amount into a fraction.  Regardless, both of these answers are correct, as I just finished the lesson.  

Hope this helps.