Respuesta :
Hi,
1)
[tex]y=-2x^2-4x+12=-2(x^2+2x+1)+2+12=-2(x+1)^2+14\\\\ Vertex=(-1,14) \ x-coordinate=-1\\ [/tex]
2)
[tex]y=x^2-4x+3=x^2-4x+4-1=(x-2)^2-1\\\\ Vertex=(2,-1) \ x-coordinate=2\\ [/tex]
1)
[tex]y=-2x^2-4x+12=-2(x^2+2x+1)+2+12=-2(x+1)^2+14\\\\ Vertex=(-1,14) \ x-coordinate=-1\\ [/tex]
2)
[tex]y=x^2-4x+3=x^2-4x+4-1=(x-2)^2-1\\\\ Vertex=(2,-1) \ x-coordinate=2\\ [/tex]
Answer with explanation:
→→The equation of curve 1 ,which is in the shape of parabola is ,when represented in general form
[tex]y= -2x^2-4 x + 12\\\\ y=-2[x^2+2 x-6]\\\\ \frac{y}{-2}=(x+1)^2-6-1\\\\ \frac{-y}{2}+7=(x+1)^2[/tex]
So, Coordinate of vertex can be obtained by
→ x+1=0
x= -1
and, [tex]\frac{-y}{2}+7=0\\\\ y=14[/tex]
is equal to , (-1,14).
x-Coordinate of vertex of the function ,[tex]y=-2x^2-4 x + 12[/tex] is equal to -1.
→→→The equation of curve 2 ,which is in the shape of parabola is ,when represented in general form
[tex]y= x^2-4 x + 3\\\\ y=(x-2)^2+3-4\\\\ y=(x-2)^2-1\\\\ y+1=(x-2)^2[/tex]
So, Coordinate of vertex can be obtained by
→ x-2=0
x= 2
and, →y+1=0
y= -1
is equal to , (2,-1).
x-Coordinate of vertex of the function ,[tex]y=x^2-4 x + 3[/tex] is equal to 2.
