The given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for w. Let x_1 = [0 1 -1 1], x_2 = [1 1 -1 -1], x_3 = [1 0 1 1] [0 1 -1 1], [3 2 -2 -4], [14 2 9 7] [0 1 -1 1], [1 0 0 -2], [6 0 1 3] [0 1 -1 1], [3 4 -4 -2], [18 4 19 13] [0 1 -1 1], [1 1 -1 -1], [1 0 1 1]